Student Academic Streaming Using Clustering Technique

Student Academic Streaming Using Clustering Technique. The Malaysian Journal of Computer Science, 30 (4). pp. 286-299. ISSN 0127-9084 (2017)



Abstract

The balance of human capital supply and industry demands are crucial to sustain a competitive advantage in order to ensure stability of economic growth. Unfortunately, companies often find it hard to recruit the right people. Many ideas obviously relate to connect human capital to education because human capital is created through education. In the education sector, there is a critical need to develop an effective planning mechanism to distribute the students into the most suitable area in the industry. In order to achieve this, the student’s pathway needs to be planned systematically in school by identifying the student’s streaming based on their academic performance. In this case, students who have the same performance will be grouped in the same cluster using a data mining technique. However, the problem is that, it is difficult to identify real potential for the students, because their performance is not well monitored, and current assessment systems do not support the student’s academic planning activities. Besides, there is no specific technique used to group students into clusters based on their performance. This study aims to overcome the problem by grouping the students according to their performance using clustering techniques and to propose a suitable model. This study aims to overcome the problem by identifying a suitable clustering model that can be used to analysis an educational data. The data involves is student performance data. Based on the data, two clusters of students are created which is science and arts. A novelty in the method of study is the use of three clustering models and a comparison among them in order to find a suitable clustering model to be used with student academic performance data. The study was conducted in five schools in Malaysia to support students’ grouping in two different academic streams, which are science and art. The result demonstrated the best model of clustering technique that is suitable for mining the educational data. Moreover, suitable streaming based on the students’ performance and education policy was created from the results. It can be used to assist schools and students in determining the appropriate streaming for the students, and support for the human capital needs by the country in the future.

Item Type: Article
Keywords: student’s performance, data mining, clustering, academic streaming
Taxonomy: By Subject > Computer & Mathematical Sciences > Computer Technology and Networking
Local Content Hub: Subjects > Computer and Mathematical Sciences
Depositing User: Eza Eliana Abdul Wahid
Date Deposited: 01 Aug 2021 13:39
Last Modified: 01 Aug 2021 13:39
Related URLs:

Actions (login required)

View Item View Item